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Introduction to Optimization Problems/Methods

From the Analysis to  the Design-Optimization

Single Objective Optimization, SOO

Multi Objective Optimization, MOO

Multi Disciplinary Optimization, MDO

TERMINOLOGY: U d t d th diff

► Optimal Design of a Car

TERMINOLOGY:    Understand the difference:

► Optimal  Design of a Car

► Design of Optimal  Car

► Optimal  Design of an Optimal Car

► Optimal  Design of an Optimal Car Shape
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What is Optimal (Car)? – Objective Function

► The one with max. speed

► The one with min. fuel consumption

► The most comfortable one

► The less expensive

► The one with min emissions► The one with min. emissions

► …

Optimality : an Objective functionOptimality : an Objective  function 
(min ή max F) must be carefully defined!!!

Objective Function FObjective Function F

Cost Function (min)

Fitness Function (max)
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But what if  more than one objectives?



Transforming a MOO problem to a SOO one

Example: Design of Optimal Wing

max C min C min 1/C max Cmax CL

min CD

min -CL

min CD

min 1/CL

min CD

max CL

max -CD

min CD+ w/CL min CD+ 1/CL min CD+ 10/CL

min CD

subject to:  CL=1.2
min CD

subject to:  CL>1.2
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Objective Function

Objective: Minimum DRAG

Objective Function: DRAG Coefficient

min F=CD
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Design (or Optimization) Variables

Shape Parametrization

Β

yB
θΑ

yA

xA xB

L

N=6   degrees of  freedom (dofs)
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Evaluation

Evaluation Tool: Code for the numerical solution of  the 
Navier-Stokes eqs.Navier Stokes eqs.

Viscous StressesViscous Stresses

DC forces= ∫
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D
carcontour

C f∫



Evaluation

L xA xByA yB θ

b1=…b  = b2=… b3=… b4=… b5=… b6=…
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F=CD=…



Constraints

Constraints:

Equality & Inequality Constraints!!!

Feasible & Infeasible Solutions to the problem
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Feasible & Infeasible Solutions to the problem



Classification of  Optimization Methods

Gradient-Based Method
F(x)

vs.
Stochastic Methods

( )

Individual-based Methods
vs.

Population-based Methods

x
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Deterministic (Gradient-Based) Optimization

F(x)( )

(if  minimization)

How to compute the gradient of F:
Fi it DiffFinite-Differences

Complex Variable methods

Automatic Differentiation

x
Adjoint method
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Deterministic (Gradient-Based) Optimization

Στόχος διατριβής

Drag sensitivity map

(a by-product of  the adjoint method)  

Losses sensitivity map

(a by-product of  the adjoint method)

(bridging the “gap” between modern 
design tools and an old-fashioneddesign tools and an old fashioned 

designer)  
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Evolutionary Algorithms

A Gradient-Free Population-based Algorithm:
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Evolutionary Algorithms

Evaluation of  the Population:

F=0.29 F=0.33

F=0.36 F=0.50

F=0 45 F=0 42F=0.45 F=0.42
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Evolutionary Algorithms

Parent Selection:

F=0.29 F=0.33

F=0.36 F=0.29

F=0 45 F=0 42F=0.45 F=0.42
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Evolutionary Algorithms

(Two Parents)

Crossover

(Two Offspring)
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Evolutionary Algorithms

Mutation
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Evolutionary Algorithms

The New Offspring Population
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The Generalized (μ,λ) Evolutionary Algorithms

Generation κ
(λ offspring)

λ evaluations Parent Selection
(μ parents)

Generation κ+1
(λ offspring)
generated by g y

applying evolution 
operators

(Crossover-
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(Crossover-
mutation-elitism)



Multiobjective Optimization – The Pareto Front

Bugatti Veyron
€1100000 
400 km/h

Price

400 km/h 

VW Golf V 
€15000€15000 
220 km/h

Simca 1100
€2000€2000 
60 km/h
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(Top Speed)‐1



Multiobjective Optimization – The Pareto Front

F2

Front 0 (Pareto) F1
F t 1

,g eS
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Front 1
Front 2

Two-objective Example: min F1, min F2



Example: Design of Optimal Power Plants

T Three Objectives:
(a) Max. efficiency,
(b) Max. power output,

P
P

T
P

(b) Max. power output,
(c) minimum investment

P

T
T

r

Capital Cost (MEuro)

T
45
50
55
60
65

Capital Cost (MEuro)

T

T
0.46

0.48
0.5

0.52
0.54

Efficiency
25

30
35

40
45

50

G2 Power Output (MW)

0.54 25
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Unfortunately:

Conventional EA/ACO/PSO/BFO etc are 
computationally expensive even on parallelcomputationally expensive, even on parallel 

platforms!

Thi i h h i f i d i th l tThis is where research is focusing during the last 
decade!!!!!!!!!
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Metamodel-Assisted Evolutionary Algorithms (MAEAs)

Evolution Evaluation

The role or metamodels

Problem-Specific 
Evaluation ToolCandidate 

solution

The role or metamodels 
during the evolution is, 

practically, to interpolate 
previously evaluated 

(Exact/Costly Model)

solution p y
individuals (generated 

during the EA) for saving 
CPU cost. 

EA
Fi Metamodel or (F

)

Fitness or 
Cost Value

Metamodel or
Surrogate Evaluation 

Tool

(Approximate/Low-Cost) rf
or

m
an

ce
 (

(Approximate/Low Cost)

P
e

D i V i bl (b)
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Design Variable (b)



MAEAs with On-Line Trained Metamodels

The concept of  Inexact Pre-Evaluation 
within the evolutionary algorithm 

(EA-IPE or MAEA)
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MAEAs with On-Line Trained Metamodels

Generation 2Generation 1 Generation 2
Generation 3More generations must be performed by the EA; 

however, the majority of  them relies on a limited number 
f ll t th bl ifi t l (CFD) th CPUof  calls to the problem-specific tool (CFD), so the CPU 

cost per generation is noticeably lower.

Generation 4Generation 
5

Generatio
n 6
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n 6K.C. GIANNAKOGLOU: ‘Design of Optimal Aerodynamic Shapes using Stochastic Optimization Methods
and Computational Intelligence’, Int. Review Journal Progress in Aerospace Sciences, Vol. 38, pp. 43-76, 2002.



Distributed MAEAs (DMAEAs)

Basic issues:

Number of demes or islands

C i i lCommunication topology

Communication frequency

Migration algorithmg g

EA set-up per deme

M K KARAKASIS A P GIOTIS and K C GIANNAKOGLOU: ‘Inexact Information Aided Low-cost
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M.K. KARAKASIS, A.P. GIOTIS and K.C. GIANNAKOGLOU: Inexact Information Aided, Low-cost,
Distributed Genetic Algorithms for Aerodynamic Shape Optimization’, Int. J. for Numerical Methods in Fluids,
Vol. 43, pp. 1149-1166, 2003.



Expected Gain in CPU Cost (EA/MAEA/DEA/DMAEA)

Airfoil Shape Optimization (min. CD, fixed CL)

Flow Conditions M∞=0.75, α ∞ =2.734o, Re=6.2 106

EA-IPE = MAEA
CL,ref=0.749, CD,ref=0.0235, β=2

Optimal Solution (SOO):  CL,opt=0.744, CD,opt=0.00963

EA IPE  MAEA
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Evaluations



Hierachical EAs or MAEAs

Hierarchical 
Evaluation

Hierarchical 
Search

Hierarchical 
Parameterization

Navier-Stokes
Finer DesignTurbulence Model

Fine Grid, etc.
GBM

Finer Design 
Many Control 

Points

Integral Method or
C G id NS

Knot 
Refinement

Knot 
Removal

Coarse Grid NS, etc
EA or MAEA Rough Design 

- Few Control 
Points

K.C. GIANNAKOGLOU and I.C. KAMPOLIS, ‘Multilevel Optimization Algorithms based on Metamodel- and 
Fitness Inheritance-Assisted Evolutionary Algorithms’, in Computational Intelligence in Expensive 
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Optimization Problems, Editors: Y. Tenne, C.-K. Goh, Springer-Verlag Series in Evolutionary Learning and 
Optimization, 2009.



Design-Optimization of Matrix Hydraulic Turbines 

Hydromatrix®: a number of “small”, axial flow turbine
generator units assembled in a grid or “matrix”.

Advantages compared to conventional designs (lower cost to power ratio):

1. Minimization of the required civil construction works.

2. Minimum time for project schedules, construction and installation.2. Minimum time for project schedules, construction and installation.

3. Small geological and hydrological risks.

4. Minimum environmental inflict .
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Design-Optimization of Matrix Hydraulic Turbines 

Parametrization:

B i d t t i th i di t ib ti fBezier curves are used to parameterize the spanwise distribution of:

mean camber surface angles at LE & TE.

circumferential position of the blade LE & TE.

mean camber surface curvature.

Blade thickness distribution.

Total: 52 to 74 design variables
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Design-Optimization of Matrix Hydraulic Turbines 

Objective 1 (G1) : Minimization of the weighted sum of  the deviations of  the 
outlet swirl and axial velocity distributions from target curves 

Objective 2 (G ): the standard deviation of the pressure distribution along theObjective 2 (G2): the standard deviation of  the pressure distribution along the 
chordwise direction, at eleven equidistant spanwise locations

Objective 3 (G ): cavitation index
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Objective 3 (G3): cavitation index



Design-Optimization of Matrix Hydraulic Turbines 

F llFull

Load

B t

Part

Load

Best

Effic

H [m] Q[m3/sec]

Part Load 3.9 9.9

Best Efficienc 7 35 11 4Best Efficiency 7.35 11.4

Full Load 9.8 12.1

(3 objectives) x (3 operating points) = 9 objectives in total
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(3 objectives) x (3 operating points) = 9 objectives in total



Design-Optimization of Matrix Hydraulic Turbines 

Solution 1

F2 = f(G3) at the three 
operating points

Solution 2
Solution 3

F1 = f(G1,G2) at the three operating points
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Design-Optimization of Matrix Hydraulic Turbines 

(1)

(2)

(3)
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Design-Optimization of Matrix Hydraulic Turbines 

NTUA

The Evolutionary Algorithm SYstem

http://velos0.ltt.mech.ntua.gr/EASY
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http://147.102.55.162/EASY 


